3.3.82 \(\int \frac {\cos ^6(e+f x)}{(a+b \sec ^2(e+f x))^{3/2}} \, dx\) [282]

3.3.82.1 Optimal result
3.3.82.2 Mathematica [C] (warning: unable to verify)
3.3.82.3 Rubi [A] (verified)
3.3.82.4 Maple [B] (verified)
3.3.82.5 Fricas [A] (verification not implemented)
3.3.82.6 Sympy [F]
3.3.82.7 Maxima [F]
3.3.82.8 Giac [F]
3.3.82.9 Mupad [F(-1)]

3.3.82.1 Optimal result

Integrand size = 25, antiderivative size = 271 \[ \int \frac {\cos ^6(e+f x)}{\left (a+b \sec ^2(e+f x)\right )^{3/2}} \, dx=\frac {\left (5 a^3-9 a^2 b+15 a b^2-35 b^3\right ) \arctan \left (\frac {\sqrt {a} \tan (e+f x)}{\sqrt {a+b+b \tan ^2(e+f x)}}\right )}{16 a^{9/2} f}+\frac {\left (15 a^2-22 a b+35 b^2\right ) \cos (e+f x) \sin (e+f x)}{48 a^3 f \sqrt {a+b+b \tan ^2(e+f x)}}+\frac {(5 a-7 b) \cos ^3(e+f x) \sin (e+f x)}{24 a^2 f \sqrt {a+b+b \tan ^2(e+f x)}}+\frac {\cos ^5(e+f x) \sin (e+f x)}{6 a f \sqrt {a+b+b \tan ^2(e+f x)}}+\frac {b \left (15 a^3-17 a^2 b+25 a b^2+105 b^3\right ) \tan (e+f x)}{48 a^4 (a+b) f \sqrt {a+b+b \tan ^2(e+f x)}} \]

output
1/16*(5*a^3-9*a^2*b+15*a*b^2-35*b^3)*arctan(a^(1/2)*tan(f*x+e)/(a+b+b*tan( 
f*x+e)^2)^(1/2))/a^(9/2)/f+1/48*(15*a^2-22*a*b+35*b^2)*cos(f*x+e)*sin(f*x+ 
e)/a^3/f/(a+b+b*tan(f*x+e)^2)^(1/2)+1/24*(5*a-7*b)*cos(f*x+e)^3*sin(f*x+e) 
/a^2/f/(a+b+b*tan(f*x+e)^2)^(1/2)+1/6*cos(f*x+e)^5*sin(f*x+e)/a/f/(a+b+b*t 
an(f*x+e)^2)^(1/2)+1/48*b*(15*a^3-17*a^2*b+25*a*b^2+105*b^3)*tan(f*x+e)/a^ 
4/(a+b)/f/(a+b+b*tan(f*x+e)^2)^(1/2)
 
3.3.82.2 Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 6 vs. order 3 in optimal.

Time = 17.72 (sec) , antiderivative size = 2068, normalized size of antiderivative = 7.63 \[ \int \frac {\cos ^6(e+f x)}{\left (a+b \sec ^2(e+f x)\right )^{3/2}} \, dx=\text {Result too large to show} \]

input
Integrate[Cos[e + f*x]^6/(a + b*Sec[e + f*x]^2)^(3/2),x]
 
output
(3*(a + b)*AppellF1[1/2, -4, 3/2, 3/2, Sin[e + f*x]^2, (a*Sin[e + f*x]^2)/ 
(a + b)]*Cos[e + f*x]^14*Sin[e + f*x])/(2*f*Sqrt[a + 2*b + a*Cos[2*(e + f* 
x)]]*(a + b*Sec[e + f*x]^2)^(3/2)*(a + b - a*Sin[e + f*x]^2)*(3*(a + b)*Ap 
pellF1[1/2, -4, 3/2, 3/2, Sin[e + f*x]^2, (a*Sin[e + f*x]^2)/(a + b)] + (3 
*a*AppellF1[3/2, -4, 5/2, 5/2, Sin[e + f*x]^2, (a*Sin[e + f*x]^2)/(a + b)] 
 - 8*(a + b)*AppellF1[3/2, -3, 3/2, 5/2, Sin[e + f*x]^2, (a*Sin[e + f*x]^2 
)/(a + b)])*Sin[e + f*x]^2)*((3*a*(a + b)*AppellF1[1/2, -4, 3/2, 3/2, Sin[ 
e + f*x]^2, (a*Sin[e + f*x]^2)/(a + b)]*Cos[e + f*x]^9*Sin[e + f*x]^2)/(Sq 
rt[a + 2*b + a*Cos[2*(e + f*x)]]*(a + b - a*Sin[e + f*x]^2)^2*(3*(a + b)*A 
ppellF1[1/2, -4, 3/2, 3/2, Sin[e + f*x]^2, (a*Sin[e + f*x]^2)/(a + b)] + ( 
3*a*AppellF1[3/2, -4, 5/2, 5/2, Sin[e + f*x]^2, (a*Sin[e + f*x]^2)/(a + b) 
] - 8*(a + b)*AppellF1[3/2, -3, 3/2, 5/2, Sin[e + f*x]^2, (a*Sin[e + f*x]^ 
2)/(a + b)])*Sin[e + f*x]^2)) + (3*(a + b)*AppellF1[1/2, -4, 3/2, 3/2, Sin 
[e + f*x]^2, (a*Sin[e + f*x]^2)/(a + b)]*Cos[e + f*x]^9)/(2*Sqrt[a + 2*b + 
 a*Cos[2*(e + f*x)]]*(a + b - a*Sin[e + f*x]^2)*(3*(a + b)*AppellF1[1/2, - 
4, 3/2, 3/2, Sin[e + f*x]^2, (a*Sin[e + f*x]^2)/(a + b)] + (3*a*AppellF1[3 
/2, -4, 5/2, 5/2, Sin[e + f*x]^2, (a*Sin[e + f*x]^2)/(a + b)] - 8*(a + b)* 
AppellF1[3/2, -3, 3/2, 5/2, Sin[e + f*x]^2, (a*Sin[e + f*x]^2)/(a + b)])*S 
in[e + f*x]^2)) - (12*(a + b)*AppellF1[1/2, -4, 3/2, 3/2, Sin[e + f*x]^2, 
(a*Sin[e + f*x]^2)/(a + b)]*Cos[e + f*x]^7*Sin[e + f*x]^2)/(Sqrt[a + 2*...
 
3.3.82.3 Rubi [A] (verified)

Time = 0.46 (sec) , antiderivative size = 293, normalized size of antiderivative = 1.08, number of steps used = 13, number of rules used = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.480, Rules used = {3042, 4634, 316, 25, 402, 25, 402, 25, 402, 27, 291, 216}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\cos ^6(e+f x)}{\left (a+b \sec ^2(e+f x)\right )^{3/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\sec (e+f x)^6 \left (a+b \sec (e+f x)^2\right )^{3/2}}dx\)

\(\Big \downarrow \) 4634

\(\displaystyle \frac {\int \frac {1}{\left (\tan ^2(e+f x)+1\right )^4 \left (b \tan ^2(e+f x)+a+b\right )^{3/2}}d\tan (e+f x)}{f}\)

\(\Big \downarrow \) 316

\(\displaystyle \frac {\frac {\tan (e+f x)}{6 a \left (\tan ^2(e+f x)+1\right )^3 \sqrt {a+b \tan ^2(e+f x)+b}}-\frac {\int -\frac {6 b \tan ^2(e+f x)+5 a-b}{\left (\tan ^2(e+f x)+1\right )^3 \left (b \tan ^2(e+f x)+a+b\right )^{3/2}}d\tan (e+f x)}{6 a}}{f}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\frac {\int \frac {6 b \tan ^2(e+f x)+5 a-b}{\left (\tan ^2(e+f x)+1\right )^3 \left (b \tan ^2(e+f x)+a+b\right )^{3/2}}d\tan (e+f x)}{6 a}+\frac {\tan (e+f x)}{6 a \left (\tan ^2(e+f x)+1\right )^3 \sqrt {a+b \tan ^2(e+f x)+b}}}{f}\)

\(\Big \downarrow \) 402

\(\displaystyle \frac {\frac {\frac {(5 a-7 b) \tan (e+f x)}{4 a \left (\tan ^2(e+f x)+1\right )^2 \sqrt {a+b \tan ^2(e+f x)+b}}-\frac {\int -\frac {15 a^2-2 b a+7 b^2+4 (5 a-7 b) b \tan ^2(e+f x)}{\left (\tan ^2(e+f x)+1\right )^2 \left (b \tan ^2(e+f x)+a+b\right )^{3/2}}d\tan (e+f x)}{4 a}}{6 a}+\frac {\tan (e+f x)}{6 a \left (\tan ^2(e+f x)+1\right )^3 \sqrt {a+b \tan ^2(e+f x)+b}}}{f}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\frac {\frac {\int \frac {15 a^2-2 b a+7 b^2+4 (5 a-7 b) b \tan ^2(e+f x)}{\left (\tan ^2(e+f x)+1\right )^2 \left (b \tan ^2(e+f x)+a+b\right )^{3/2}}d\tan (e+f x)}{4 a}+\frac {(5 a-7 b) \tan (e+f x)}{4 a \left (\tan ^2(e+f x)+1\right )^2 \sqrt {a+b \tan ^2(e+f x)+b}}}{6 a}+\frac {\tan (e+f x)}{6 a \left (\tan ^2(e+f x)+1\right )^3 \sqrt {a+b \tan ^2(e+f x)+b}}}{f}\)

\(\Big \downarrow \) 402

\(\displaystyle \frac {\frac {\frac {\frac {\left (15 a^2-22 a b+35 b^2\right ) \tan (e+f x)}{2 a \left (\tan ^2(e+f x)+1\right ) \sqrt {a+b \tan ^2(e+f x)+b}}-\frac {\int -\frac {15 a^3+3 b a^2+b^2 a-35 b^3+2 b \left (15 a^2-22 b a+35 b^2\right ) \tan ^2(e+f x)}{\left (\tan ^2(e+f x)+1\right ) \left (b \tan ^2(e+f x)+a+b\right )^{3/2}}d\tan (e+f x)}{2 a}}{4 a}+\frac {(5 a-7 b) \tan (e+f x)}{4 a \left (\tan ^2(e+f x)+1\right )^2 \sqrt {a+b \tan ^2(e+f x)+b}}}{6 a}+\frac {\tan (e+f x)}{6 a \left (\tan ^2(e+f x)+1\right )^3 \sqrt {a+b \tan ^2(e+f x)+b}}}{f}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\frac {\frac {\frac {\int \frac {15 a^3+3 b a^2+b^2 a-35 b^3+2 b \left (15 a^2-22 b a+35 b^2\right ) \tan ^2(e+f x)}{\left (\tan ^2(e+f x)+1\right ) \left (b \tan ^2(e+f x)+a+b\right )^{3/2}}d\tan (e+f x)}{2 a}+\frac {\left (15 a^2-22 a b+35 b^2\right ) \tan (e+f x)}{2 a \left (\tan ^2(e+f x)+1\right ) \sqrt {a+b \tan ^2(e+f x)+b}}}{4 a}+\frac {(5 a-7 b) \tan (e+f x)}{4 a \left (\tan ^2(e+f x)+1\right )^2 \sqrt {a+b \tan ^2(e+f x)+b}}}{6 a}+\frac {\tan (e+f x)}{6 a \left (\tan ^2(e+f x)+1\right )^3 \sqrt {a+b \tan ^2(e+f x)+b}}}{f}\)

\(\Big \downarrow \) 402

\(\displaystyle \frac {\frac {\frac {\frac {\frac {\int \frac {3 (a+b) \left (5 a^3-9 b a^2+15 b^2 a-35 b^3\right )}{\left (\tan ^2(e+f x)+1\right ) \sqrt {b \tan ^2(e+f x)+a+b}}d\tan (e+f x)}{a (a+b)}+\frac {b \left (15 a^3-17 a^2 b+25 a b^2+105 b^3\right ) \tan (e+f x)}{a (a+b) \sqrt {a+b \tan ^2(e+f x)+b}}}{2 a}+\frac {\left (15 a^2-22 a b+35 b^2\right ) \tan (e+f x)}{2 a \left (\tan ^2(e+f x)+1\right ) \sqrt {a+b \tan ^2(e+f x)+b}}}{4 a}+\frac {(5 a-7 b) \tan (e+f x)}{4 a \left (\tan ^2(e+f x)+1\right )^2 \sqrt {a+b \tan ^2(e+f x)+b}}}{6 a}+\frac {\tan (e+f x)}{6 a \left (\tan ^2(e+f x)+1\right )^3 \sqrt {a+b \tan ^2(e+f x)+b}}}{f}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {\frac {\frac {\frac {3 \left (5 a^3-9 a^2 b+15 a b^2-35 b^3\right ) \int \frac {1}{\left (\tan ^2(e+f x)+1\right ) \sqrt {b \tan ^2(e+f x)+a+b}}d\tan (e+f x)}{a}+\frac {b \left (15 a^3-17 a^2 b+25 a b^2+105 b^3\right ) \tan (e+f x)}{a (a+b) \sqrt {a+b \tan ^2(e+f x)+b}}}{2 a}+\frac {\left (15 a^2-22 a b+35 b^2\right ) \tan (e+f x)}{2 a \left (\tan ^2(e+f x)+1\right ) \sqrt {a+b \tan ^2(e+f x)+b}}}{4 a}+\frac {(5 a-7 b) \tan (e+f x)}{4 a \left (\tan ^2(e+f x)+1\right )^2 \sqrt {a+b \tan ^2(e+f x)+b}}}{6 a}+\frac {\tan (e+f x)}{6 a \left (\tan ^2(e+f x)+1\right )^3 \sqrt {a+b \tan ^2(e+f x)+b}}}{f}\)

\(\Big \downarrow \) 291

\(\displaystyle \frac {\frac {\frac {\frac {\frac {3 \left (5 a^3-9 a^2 b+15 a b^2-35 b^3\right ) \int \frac {1}{\frac {a \tan ^2(e+f x)}{b \tan ^2(e+f x)+a+b}+1}d\frac {\tan (e+f x)}{\sqrt {b \tan ^2(e+f x)+a+b}}}{a}+\frac {b \left (15 a^3-17 a^2 b+25 a b^2+105 b^3\right ) \tan (e+f x)}{a (a+b) \sqrt {a+b \tan ^2(e+f x)+b}}}{2 a}+\frac {\left (15 a^2-22 a b+35 b^2\right ) \tan (e+f x)}{2 a \left (\tan ^2(e+f x)+1\right ) \sqrt {a+b \tan ^2(e+f x)+b}}}{4 a}+\frac {(5 a-7 b) \tan (e+f x)}{4 a \left (\tan ^2(e+f x)+1\right )^2 \sqrt {a+b \tan ^2(e+f x)+b}}}{6 a}+\frac {\tan (e+f x)}{6 a \left (\tan ^2(e+f x)+1\right )^3 \sqrt {a+b \tan ^2(e+f x)+b}}}{f}\)

\(\Big \downarrow \) 216

\(\displaystyle \frac {\frac {\frac {\frac {\left (15 a^2-22 a b+35 b^2\right ) \tan (e+f x)}{2 a \left (\tan ^2(e+f x)+1\right ) \sqrt {a+b \tan ^2(e+f x)+b}}+\frac {\frac {b \left (15 a^3-17 a^2 b+25 a b^2+105 b^3\right ) \tan (e+f x)}{a (a+b) \sqrt {a+b \tan ^2(e+f x)+b}}+\frac {3 \left (5 a^3-9 a^2 b+15 a b^2-35 b^3\right ) \arctan \left (\frac {\sqrt {a} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)+b}}\right )}{a^{3/2}}}{2 a}}{4 a}+\frac {(5 a-7 b) \tan (e+f x)}{4 a \left (\tan ^2(e+f x)+1\right )^2 \sqrt {a+b \tan ^2(e+f x)+b}}}{6 a}+\frac {\tan (e+f x)}{6 a \left (\tan ^2(e+f x)+1\right )^3 \sqrt {a+b \tan ^2(e+f x)+b}}}{f}\)

input
Int[Cos[e + f*x]^6/(a + b*Sec[e + f*x]^2)^(3/2),x]
 
output
(Tan[e + f*x]/(6*a*(1 + Tan[e + f*x]^2)^3*Sqrt[a + b + b*Tan[e + f*x]^2]) 
+ (((5*a - 7*b)*Tan[e + f*x])/(4*a*(1 + Tan[e + f*x]^2)^2*Sqrt[a + b + b*T 
an[e + f*x]^2]) + (((15*a^2 - 22*a*b + 35*b^2)*Tan[e + f*x])/(2*a*(1 + Tan 
[e + f*x]^2)*Sqrt[a + b + b*Tan[e + f*x]^2]) + ((3*(5*a^3 - 9*a^2*b + 15*a 
*b^2 - 35*b^3)*ArcTan[(Sqrt[a]*Tan[e + f*x])/Sqrt[a + b + b*Tan[e + f*x]^2 
]])/a^(3/2) + (b*(15*a^3 - 17*a^2*b + 25*a*b^2 + 105*b^3)*Tan[e + f*x])/(a 
*(a + b)*Sqrt[a + b + b*Tan[e + f*x]^2]))/(2*a))/(4*a))/(6*a))/f
 

3.3.82.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 291
Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*((c_) + (d_.)*(x_)^2)), x_Symbol] :> Subst 
[Int[1/(c - (b*c - a*d)*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a, b, c, 
d}, x] && NeQ[b*c - a*d, 0]
 

rule 316
Int[((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_), x_Symbol] :> Sim 
p[(-b)*x*(a + b*x^2)^(p + 1)*((c + d*x^2)^(q + 1)/(2*a*(p + 1)*(b*c - a*d)) 
), x] + Simp[1/(2*a*(p + 1)*(b*c - a*d))   Int[(a + b*x^2)^(p + 1)*(c + d*x 
^2)^q*Simp[b*c + 2*(p + 1)*(b*c - a*d) + d*b*(2*(p + q + 2) + 1)*x^2, x], x 
], x] /; FreeQ[{a, b, c, d, q}, x] && NeQ[b*c - a*d, 0] && LtQ[p, -1] &&  ! 
( !IntegerQ[p] && IntegerQ[q] && LtQ[q, -1]) && IntBinomialQ[a, b, c, d, 2, 
 p, q, x]
 

rule 402
Int[((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_.)*((e_) + (f_.)*(x 
_)^2), x_Symbol] :> Simp[(-(b*e - a*f))*x*(a + b*x^2)^(p + 1)*((c + d*x^2)^ 
(q + 1)/(a*2*(b*c - a*d)*(p + 1))), x] + Simp[1/(a*2*(b*c - a*d)*(p + 1)) 
 Int[(a + b*x^2)^(p + 1)*(c + d*x^2)^q*Simp[c*(b*e - a*f) + e*2*(b*c - a*d) 
*(p + 1) + d*(b*e - a*f)*(2*(p + q + 2) + 1)*x^2, x], x], x] /; FreeQ[{a, b 
, c, d, e, f, q}, x] && LtQ[p, -1]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4634
Int[sec[(e_.) + (f_.)*(x_)]^(m_)*((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)]^(n_) 
)^(p_), x_Symbol] :> With[{ff = FreeFactors[Tan[e + f*x], x]}, Simp[ff/f 
Subst[Int[(1 + ff^2*x^2)^(m/2 - 1)*ExpandToSum[a + b*(1 + ff^2*x^2)^(n/2), 
x]^p, x], x, Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ 
[m/2] && IntegerQ[n/2]
 
3.3.82.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(1498\) vs. \(2(247)=494\).

Time = 9.78 (sec) , antiderivative size = 1499, normalized size of antiderivative = 5.53

method result size
default \(\text {Expression too large to display}\) \(1499\)

input
int(cos(f*x+e)^6/(a+b*sec(f*x+e)^2)^(3/2),x,method=_RETURNVERBOSE)
 
output
1/48/f/a^4/(-a)^(1/2)/(a+b)*(b+a*cos(f*x+e)^2)*(8*(-a)^(1/2)*a^4*cos(f*x+e 
)^6*sin(f*x+e)+8*(-a)^(1/2)*a^3*b*cos(f*x+e)^6*sin(f*x+e)+10*(-a)^(1/2)*a^ 
4*cos(f*x+e)^4*sin(f*x+e)-4*(-a)^(1/2)*a^3*b*cos(f*x+e)^4*sin(f*x+e)-14*(- 
a)^(1/2)*a^2*b^2*cos(f*x+e)^4*sin(f*x+e)+15*(-a)^(1/2)*a^4*cos(f*x+e)^2*si 
n(f*x+e)-7*(-a)^(1/2)*a^3*b*cos(f*x+e)^2*sin(f*x+e)+13*(-a)^(1/2)*a^2*b^2* 
cos(f*x+e)^2*sin(f*x+e)+35*(-a)^(1/2)*a*b^3*cos(f*x+e)^2*sin(f*x+e)+15*((b 
+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*ln(4*(-a)^(1/2)*((b+a*cos(f*x+e)^ 
2)/(1+cos(f*x+e))^2)^(1/2)*cos(f*x+e)+4*(-a)^(1/2)*((b+a*cos(f*x+e)^2)/(1+ 
cos(f*x+e))^2)^(1/2)-4*sin(f*x+e)*a)*a^4*cos(f*x+e)-12*((b+a*cos(f*x+e)^2) 
/(1+cos(f*x+e))^2)^(1/2)*ln(4*(-a)^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e) 
)^2)^(1/2)*cos(f*x+e)+4*(-a)^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^( 
1/2)-4*sin(f*x+e)*a)*a^3*b*cos(f*x+e)+18*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e) 
)^2)^(1/2)*ln(4*(-a)^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*cos 
(f*x+e)+4*(-a)^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)-4*sin(f*x 
+e)*a)*a^2*b^2*cos(f*x+e)-60*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*l 
n(4*(-a)^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*cos(f*x+e)+4*(- 
a)^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)-4*sin(f*x+e)*a)*a*b^3 
*cos(f*x+e)-105*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*ln(4*(-a)^(1/2 
)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*cos(f*x+e)+4*(-a)^(1/2)*((b+ 
a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)-4*sin(f*x+e)*a)*b^4*cos(f*x+e)+...
 
3.3.82.5 Fricas [A] (verification not implemented)

Time = 4.39 (sec) , antiderivative size = 941, normalized size of antiderivative = 3.47 \[ \int \frac {\cos ^6(e+f x)}{\left (a+b \sec ^2(e+f x)\right )^{3/2}} \, dx=\text {Too large to display} \]

input
integrate(cos(f*x+e)^6/(a+b*sec(f*x+e)^2)^(3/2),x, algorithm="fricas")
 
output
[1/384*(3*(5*a^4*b - 4*a^3*b^2 + 6*a^2*b^3 - 20*a*b^4 - 35*b^5 + (5*a^5 - 
4*a^4*b + 6*a^3*b^2 - 20*a^2*b^3 - 35*a*b^4)*cos(f*x + e)^2)*sqrt(-a)*log( 
128*a^4*cos(f*x + e)^8 - 256*(a^4 - a^3*b)*cos(f*x + e)^6 + 32*(5*a^4 - 14 
*a^3*b + 5*a^2*b^2)*cos(f*x + e)^4 + a^4 - 28*a^3*b + 70*a^2*b^2 - 28*a*b^ 
3 + b^4 - 32*(a^4 - 7*a^3*b + 7*a^2*b^2 - a*b^3)*cos(f*x + e)^2 - 8*(16*a^ 
3*cos(f*x + e)^7 - 24*(a^3 - a^2*b)*cos(f*x + e)^5 + 2*(5*a^3 - 14*a^2*b + 
 5*a*b^2)*cos(f*x + e)^3 - (a^3 - 7*a^2*b + 7*a*b^2 - b^3)*cos(f*x + e))*s 
qrt(-a)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*sin(f*x + e)) + 8*(8*( 
a^5 + a^4*b)*cos(f*x + e)^7 + 2*(5*a^5 - 2*a^4*b - 7*a^3*b^2)*cos(f*x + e) 
^5 + (15*a^5 - 7*a^4*b + 13*a^3*b^2 + 35*a^2*b^3)*cos(f*x + e)^3 + (15*a^4 
*b - 17*a^3*b^2 + 25*a^2*b^3 + 105*a*b^4)*cos(f*x + e))*sqrt((a*cos(f*x + 
e)^2 + b)/cos(f*x + e)^2)*sin(f*x + e))/((a^7 + a^6*b)*f*cos(f*x + e)^2 + 
(a^6*b + a^5*b^2)*f), -1/192*(3*(5*a^4*b - 4*a^3*b^2 + 6*a^2*b^3 - 20*a*b^ 
4 - 35*b^5 + (5*a^5 - 4*a^4*b + 6*a^3*b^2 - 20*a^2*b^3 - 35*a*b^4)*cos(f*x 
 + e)^2)*sqrt(a)*arctan(1/4*(8*a^2*cos(f*x + e)^5 - 8*(a^2 - a*b)*cos(f*x 
+ e)^3 + (a^2 - 6*a*b + b^2)*cos(f*x + e))*sqrt(a)*sqrt((a*cos(f*x + e)^2 
+ b)/cos(f*x + e)^2)/((2*a^3*cos(f*x + e)^4 - a^2*b + a*b^2 - (a^3 - 3*a^2 
*b)*cos(f*x + e)^2)*sin(f*x + e))) - 4*(8*(a^5 + a^4*b)*cos(f*x + e)^7 + 2 
*(5*a^5 - 2*a^4*b - 7*a^3*b^2)*cos(f*x + e)^5 + (15*a^5 - 7*a^4*b + 13*a^3 
*b^2 + 35*a^2*b^3)*cos(f*x + e)^3 + (15*a^4*b - 17*a^3*b^2 + 25*a^2*b^3...
 
3.3.82.6 Sympy [F]

\[ \int \frac {\cos ^6(e+f x)}{\left (a+b \sec ^2(e+f x)\right )^{3/2}} \, dx=\int \frac {\cos ^{6}{\left (e + f x \right )}}{\left (a + b \sec ^{2}{\left (e + f x \right )}\right )^{\frac {3}{2}}}\, dx \]

input
integrate(cos(f*x+e)**6/(a+b*sec(f*x+e)**2)**(3/2),x)
 
output
Integral(cos(e + f*x)**6/(a + b*sec(e + f*x)**2)**(3/2), x)
 
3.3.82.7 Maxima [F]

\[ \int \frac {\cos ^6(e+f x)}{\left (a+b \sec ^2(e+f x)\right )^{3/2}} \, dx=\int { \frac {\cos \left (f x + e\right )^{6}}{{\left (b \sec \left (f x + e\right )^{2} + a\right )}^{\frac {3}{2}}} \,d x } \]

input
integrate(cos(f*x+e)^6/(a+b*sec(f*x+e)^2)^(3/2),x, algorithm="maxima")
 
output
integrate(cos(f*x + e)^6/(b*sec(f*x + e)^2 + a)^(3/2), x)
 
3.3.82.8 Giac [F]

\[ \int \frac {\cos ^6(e+f x)}{\left (a+b \sec ^2(e+f x)\right )^{3/2}} \, dx=\int { \frac {\cos \left (f x + e\right )^{6}}{{\left (b \sec \left (f x + e\right )^{2} + a\right )}^{\frac {3}{2}}} \,d x } \]

input
integrate(cos(f*x+e)^6/(a+b*sec(f*x+e)^2)^(3/2),x, algorithm="giac")
 
output
sage0*x
 
3.3.82.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\cos ^6(e+f x)}{\left (a+b \sec ^2(e+f x)\right )^{3/2}} \, dx=\int \frac {{\cos \left (e+f\,x\right )}^6}{{\left (a+\frac {b}{{\cos \left (e+f\,x\right )}^2}\right )}^{3/2}} \,d x \]

input
int(cos(e + f*x)^6/(a + b/cos(e + f*x)^2)^(3/2),x)
 
output
int(cos(e + f*x)^6/(a + b/cos(e + f*x)^2)^(3/2), x)